Influence of stabilizers on Na- β'' -Al₂O₃ phase formation in Li₂O(MgO)-Na₂O-Al₂O₃ ternary systems

JEONG-HYUN PARK, KYUNG-HEE KIM Department of Ceramic Engineering, Yonsei University, Seoul 120-749, Korea

SUNG-KI LIM

Department of Industrial Chemistry Engineering, Konkuk University, Seoul 133-701, Korea E-mail: citylite@kriss.re.kr

The influences of stabilizers on β - and β'' -Al₂O₃ phase formations in Li₂O(MgO)-Na₂O-Al₂O₃ systems were investigated. When stabilized with 4MgCO₃·Mg(OH)₂·5H₂O, most of the β'' -Al₂O₃ phase formed below 1200 °C and further β - to β'' -Al₂O₃ transformation with an increase of temperature was not observed. On the other hand, when stabilized with Li₂CO₃, β'' -Al₂O₃ formation occurred by two steps. First, β'' -Al₂O₃ to β'' -Al₂O₃ occurred at higher temperature ranges. It was shown that transient eutectic liquid in the Li₂O-Na₂O-Al₂O₃ system promoted the β - to β'' -Al₂O₃ transformation at higher temperatures. Uniform distribution of both Mg²⁺ and Li⁺ stabilizing ions enhanced β'' -Al₂O₃ formation at low temperatures. In the Li-stabilized systems, however, homogeneous distribution of Li⁺ ions hindered both the formation of transient eutectic liquid and the second β - to β'' -Al₂O₃ phase transformation at high temperatures. © *1998 Kluwer Academic Publishers*

1. Introduction

 β'' -Al₂O₃ ceramics is a superionic conductor of Na⁺ ions and has the highest level of ionic conductivity among ceramic materials. It has been used as a solid electrolyte in a Na/S secondary battery and as an electrode in an alkali metal thermoelectric converter (AMTEC). Applications of this material are being extended mainly to sensors and proton conductors by exchanging Na⁺ ions with other conductive ions such as Ag⁺, NH₄⁺, H₃O⁺, and so on.

 β'' -Al₂O₃ is not stable and decomposes over 1400 °C in a binary Na₂O-Al₂O₃ system [1], hence cations whose ionic radii are less than 0.097 nm are usually doped to stabilize β'' -Al₂O₃, which has conductivity five times higher than β -Al₂O₃ has [2, 3]. Mg²⁺ or Li⁺ ions have been most widely used as the stabilizing cations. Li⁺ ions are known to be more effective for the β'' -Al₂O₃ formation than Mg²⁺ ions are [4, 5]. The different behaviors of each stabilizing cation during the phase formation have not been provided yet, however; thus, it is difficult to clarify the different effect of each stabilizer on the phase formation and transformation.

The β - to β'' -Al₂O₃ transformation mechanism as well as phase diagrams have still been confused in both Na₂O-Al₂O₃ binary and Li₂O(MgO)-Na₂O-Al₂O₃ ternary systems. According to the kinetic studies of Hodge [1] and Bera [4], in Na₂O-Al₂O₃ and Li₂O-Na₂O-Al₂O₃ systems, β'' -Al₂O₃ formation and decomposition could be explained by the reaction of β -Al₂O₃ with γ -NaAlO₂ phase that might exist in the grain boundary. In addition, the rate of transformations between β - and β'' -Al₂O₃ was slow and would be controlled by the diffusion of Al³⁺ ions. On the other hand, it was reported that transformations between β - and β'' -Al₂O₃ were thought to be more polymorphic transformation than decomposition [6, 7], and stability of β - and β'' -Al₂O₃ depended on the heat treatment history in the Na₂O-Al₂O₃ system [7]. Although those mechanisms were suggested, it has still been difficult to explain the β'' -Al₂O₃ formation systematically during processing.

The degree of homogeneity of additives can have a substantial effect on β'' -Al₂O₃ phase formation. In order to enhance the homogeneity during mixing, the chemical routes such as coprecipitation or sol-gel method have been attempted. But, in comparison with solid state reaction, these sophisticated processes had drawbacks forming metastable structures such as γ -Al₂O₃ and m-Al₂O₃ that were not desirable to form β - and β'' -Al₂O₃ phases [8]. When prepared by solid state reaction, the homogenization of powder mixtures can be improved by altering the source of stabilizers. In the so-called zeta process, Li₂O·5Al₂O₃ (zeta lithium aluminate) was used instead of Li salts like Li₂CO₃ or LiNO₃. The zeta-processed powder was proved to attain five times more uniform distribution of Li⁺ ions than conventionally prepared powders did [9, 10].

The objective of the present study is to examine the different effects of Li and Mg stabilizing agents on the β'' -Al₂O₃ phase formation process. The influence

TABLE I Composition of samples

Designation	Composition
M1	0.33MgO·0.87Na ₂ O·5.2Al ₂ O ₃
M2	0.33MgO·1.17Na2O·5.2Al2O3
M3	0.66MgO·0.87Na ₂ O·5.2Al ₂ O ₃
L1	0.147Li ₂ O·0.87Na ₂ O·5.2Al ₂ O ₃
L2	0.147Li2O·1.17Na2O·5.2Al2O3
L3	$0.294 Li_2 O \cdot 0.87 Na_2 O \cdot 5.2 Al_2 O_3$

of transient eutectic liquid and the distribution effect of stabilizing ions on the phase transformation were studied by varying the chemical compositions and the sources of stabilizing ions.

2. Experimental

The compositions for this study are summarized in Table I. M1 and L1 are widely accepted compositions to fabricate β'' -Al₂O₃ ceramics. M2 and L2 are Na₂Orich compositions that were prepared by adding 0.3 mol of Na₂O to the compositions of M1 and L1. M3 and L3 are stabilizer-rich compositions and are prepared by adding twice as many moles of MgO and Li₂O compared with the compositions of M1 and L1, respectively. In compositions of M1-M3 and L1-L3, 4MgCO₃·Mg(OH)₂·5H₂O and Li₂CO₃ were used as Mg and Li sources, respectively. To compare the distribution effect, MgO and Li₂O·5Al₂O₃ were used as stabilizing sources for the same compositions of M1 and L1. High purity α -Al₂O₃ and reagent-grade salts of Na₂CO₃, MgO, 4MgCO₃·Mg(OH)₂·5H₂O, and Li₂CO₃ were used as starting materials. In order to prepare Li₂O·5Al₂O₃, appropriate amounts of Li₂CO₃ and α -Al₂O₃ were mixed and then calcined at 1250 °C for 3 h. XRD patterns proved the complete formation of the Li₂O·5Al₂O₃ phase. Appropriate amounts of powders were weighed and then mixed by ball milling for 8 h using acetone as a liquid medium. After drying and sieving, the precursor powders were packed in MgO crucibles with MgO covers and calcined at temperatures ranging from 1000 °C to 1600 °C for 240 min.

The phase compositions of calcined samples were measured by x-ray diffractometry. The relative amounts of phases were determined by calculating the line intensities of well-separated peaks of each phase using the following equations [11, 12].

% of
$$\alpha = \left[\left\{ I(\alpha 012) \frac{10}{7.4} + I(\alpha 113) \right\} \times \frac{1}{2} \right] / X \times 100(\%)$$
 (1)

% of
$$\beta'' = \frac{I(\beta''0111)}{X} \times \frac{10}{4} \times 100(\%)$$
 (2)

% of
$$\beta = \frac{I(\beta 017)}{X} \times \frac{10}{4} \times 100(\%)$$
 (3)

% of
$$\gamma = \frac{I(\gamma \, 120)}{X} \times 100(\%),$$
 (4)

where $X = \{I(\alpha 012)\frac{10}{7.4} + I(\alpha 113)\}\frac{1}{2} + I(\beta 017)\frac{10}{4} + I(\beta''0111)\frac{10}{4} + I(\gamma 120)$

- $I(\alpha 012)$: X-ray intensity of (012) plane of α -Al₂O₃ phase
- $I(\alpha 113)$: X-ray intensity of (113) plane of α -Al₂O₃ phase
- $I(\beta 017)$: X-ray intensity of (017) plane of β -Al₂O₃ phase
- $I(\beta''0111)$: X-ray intensity of (0111) plane of β'' -Al₂O₃ phase
- $I(\gamma 120)$: X-ray intensity of (120) plane of γ -NaAlO₂ phase

3. Results and discussion

Phase transformation largely depended on the calcination temperature and showed much difference between Mg- and Li-stabilized systems. Fig. 1 shows the phase formations of M1, M2, and M3 compositions that were stabilized with 4MgCO₃·Mg(OH)₂·5H₂O and calcined at 1000–1600 °C for 240 min. In Fig. 1, it is noticeable that the phase formation was almost completed below 1200 °C. In all compositions of M1–M3 $\alpha\text{-Al}_2\text{O}_3$ disappeared at 1200 °C, and γ -NaAlO₂ also disappeared at 1200 °C in M1 and M3, but not in M2 composition that was a Na₂O-rich composition. Most of the β - and β'' -Al₂O₃ phases were formed at 1200 °C, especially β'' -Al₂O₃ as a main phase, and the formed phases were maintained up to 1600 °C. Further, β - to β'' -Al₂O₃ phase transformation above 1200 °C was not observed.

Fig. 2 presents the phase formation curves of L1-L3 compositions stabilized with Li2CO3. In all compositions, α -Al₂O₃ phase disappeared below 1200 °C. In L1, γ -NaAlO₂ phase also disappeared below 1200 °C, but it existed up to higher temperatures in L2 and L3. Although the β - and β'' -Al₂O₃ phases were formed at 1200 °C as main phases, the amounts of β'' -Al₂O₃ phase (53%, 45%, and 36% for L1, L2, and L3, respectively) were much less compared with the 4MgCO₃. Mg(OH)₂·5H₂O-stabilized systems (79%, 71%, and 84% for M1, M2, and M3, respectively). Around 1500 °C, rapid increases of β'' -Al₂O₃ fraction occurred by β -Al₂O₃ to β'' -Al₂O₃ transformation and the β'' -Al₂O₃ formation was completed. Such two-step formation of β'' -Al₂O₃ was characteristic in Li₂CO₃- stabilized systems and was not observed in 4MgCO₃. $Mg(OH)_2 \cdot 5H_2O$ -stabilized systems. The temperature ranges for second β'' -Al₂O₃ formation were 1400– 1500 °C for L3 and 1500–1600 °C for L1 and L2. This indicates that the different amount of Li caused the different temperature ranges for the second transformation because L3 was a Li-rich composition that contained twice as many moles of Li compared with L1 and L2.

It has been reported that β'' -Al₂O₃ densified in a few minutes, and such rapid densification was attributed to the ternary transient eutectic liquids that formed at 1460–1470 °C in the LiAlO₂-NaAlO₂-Al₂O₃ system [10, 13]. Even though L1, L2, and L3 compositions are not exactly in accord with the eutectic composition in the LiAlO₂-NaAlO₂-Al₂O₃ system, it is well-known that the eutectics do not form exactly at the eutectic

Figure 1 Phase fraction of samples stabilized with $4MgCO_3$. $Mg(OH)_2$. $5H_2O$ as a function of calcination temperature (a) M1, (b) M2, (c) M3.

Figure 2 Phase fraction of samples stabilized with Li_2CO_3 as a function of calcination temperature (a) L1, (b) L2, (c) L3.

composition. Eutectics can be formed in local inhomogeneity regions and have hardly been observed in micrographs because the transient eutectic liquid has high solid solubility, and they disappear after complete homogenization caused by diffusional process [14].

Stabilization of β'' -Al₂O₃ is basically the substitution of the Al³⁺ ions by the stabilizing cations, and the compensating Mg²⁺ ions generally substitute the tetrahedral Al³⁺ ions, and Li⁺ ions substitute octahedral Al³⁺ ions in the spinel block [15, 16]. Thus it can be thought that β'' -Al₂O₃ phase formation is mainly controlled by diffusion of stabilizing ions. The ternary eutectic liquid is expected to be the fast path for the diffusion and enhance the β - to β'' -Al₂O₃ transformation.

The decrease of transition temperature range with increasing Li amount implies that the transient eutectic liquids provide the fast diffusion path and are responsible for the second β'' -Al₂O₃ formation from β -Al₂O₃ in the systems stabilized with Li₂CO₃. That is, the higher Li content led to the more eutectic liquids and lowered the temperature range at which the second transformation occurred. Thus the temperature range could differ a little according to the composition that determined the amount of liquid phase.

In comparison with Li₂CO₃-stabilized compositions, the 4MgCO₃·Mg(OH)₂·5H₂O-stabilized system had no rapid transformation from β - to β'' -Al₂O₃ above 1200 °C. Since ternary eutectic liquid does not exist in the MgO-Na₂O-Al₂O₃ system, diffusion is likely to occur through solid state or binary eutectic liquid in the Na₂O-Al₂O₃ system. Binary phase diagrams are still in controversy. According to DeVries and Roth [17], eutectic liquid formed at 1410 °C, whereas Weber and Venero [18] reported it at 1585 °C. Because the sintering of binary and Mg-stabilized ternary systems is also completed in several minutes, the binary eutectic liquid is expected to exist and also acts as a fast path for diffusion.

Mg-stabilizing ions do not seem to be soluble in binary eutectic liquid, however, so binary eutectics do not affect the movement of Mg^{2+} ions. In fact, the influence of binary eutectic liquid on the phase transformation was not found in the $4MgCO_3 \cdot Mg(OH)_2 \cdot 5H_2O$ stabilized system as well as in the Li_2CO_3 -stabilized system. Therefore, it can be concluded that binary eutectics do not contribute to phase transformation in both Mg and Li ternary systems, whereas the eutectics of Li ternary system enhance the phase transformation at high temperatures.

At the low temperature range of 1000-1200 °C, direct transformation from α -Al₂O₃ and γ -NaAlO₂ phases to β - and β'' -Al₂O₃ occurred in both systems, which was in agreement with previous research [17–20]. However, the difference in the amount of β'' -Al₂O₃ at 1200 °C between 4MgCO₃·Mg(OH)₂·5H₂O-stabilized and Li₂CO₃-stabilized systems demands a more detailed explanation.

To explain the different β'' -Al₂O₃ fractions at 1200 °C and examine the distribution effect of stabilizing ions, stabilizing sources were changed to vary the distribution of stabilizing ions by controlling the volume of stabilizer. Instead of Li₂CO₃ and

Figure 3 Phase fraction of L1 composition stabilized with $Li_2O \cdot 5Al_2O_3$ as a function of calcination temperature.

 $4MgCO_3 \cdot Mg(OH)_2 \cdot 5H_2O$, $Li_2O \cdot 5Al_2O_3$ and MgO were used as stabilizing sources, respectively. When the same amount of Li⁺ and Mg²⁺ were contained, $4MgCO_3 \cdot Mg(OH)_2 \cdot 5H_2O$ and $Li_2O \cdot 5Al_2O_3$ had more volume than MgO and Li_2CO_3 had, respectively, and induced the more uniform distribution of stabilizing ions during mechanical mixing.

Fig. 3 shows the phase fractions of L1 composition stabilized with Li₂O·5Al₂O₃, the so-called zeta process. It has been known that Li₂O·5Al₂O₃ enhances the homogeneity of Li⁺ ions and increases the fraction of β'' -Al₂O₃ after sintering [9]. As shown in Fig. 3, most of the β'' -Al₂O₃ was formed at the temperature range of 1100–1300 °C and maintained above 1300 °C, and the second increase of β'' -Al₂O₃ by β - to β'' -Al₂O₃ transformation did not occur. Such a transformation process differed from the L1 composition stabilized with Li₂CO₃ but was very similar to the phase formation phenomena in the 4MgCO₃·Mg(OH)₂·5H₂O-stabilized systems.

As mentioned earlier, transient eutectics readily form in the compositionally inhomogeneous regions and disappear by diffusional homogenization. The uniform dispersion of Li⁺ ions by Li₂O·5Al₂O₃ prevented the formation of transient eutectic liquid at the high temperatures; therefore, the second conversion from β - to β'' phase could not occur. It can be concluded from Fig. 3 that the second conversion in the Li₂CO₃-stabilized systems was attributed to the ternary transient eutectic liquid that existed locally due to the inhomogeneous dispersion of Li⁺ ions.

Fig. 4 shows the phase composition of M1 composition when MgO was used as a stabilizing source instead of $4MgCO_3 \cdot Mg(OH)_2 \cdot 5H_2O$. The β'' -Al₂O₃ fraction was lower and the β -Al₂O₃ fraction was higher in all temperature ranges than the fractions of the same composition (M1) stabilized with $4MgCO_3 \cdot Mg(OH)_2 \cdot 5H_2O$ were. Reactions from

Figure 4 Phase fraction of M1 composition stabilized with MgO as a function of calcination temperature.

 α -Al₂O₃ to β - and β'' -Al₂O₃ were completed at a little higher temperature of 1300 °C compared with the 4MgCO₃·Mg(OH)₂·5H₂O-stabilized system (1200 °C). It can be known from Fig. 4 that the uniform distribution of stabilizers allowed the β'' -Al₂O₃ phase formation at the lower temperature range and gave a higher β'' -Al₂O₃ fraction.

Homogeneous dispersion of the stabilizing ions played a very important role in the β'' -Al₂O₃ formation at the low temperature range as shown in the systems stabilized with Li₂O·5Al₂O₃, MgO, and 4MgCO₃·Mg(OH)₂·5H₂O. By contrast, the β - to β'' phase transformation mainly occurred by ternary transient eutectics in the systems stabilized with Li₂CO₃.

4. Conclusions

Phase transformation process in the β - and β'' -Al₂O₃ systems with different stabilizers was analysed during calcination at 1000–1600 °C for 240 min. In 4MgCO₃·Mg(OH)₂·5H₂O-stabilized compositions, β'' -Al₂O₃ formation almost completed at 1200 °C, and the formed β'' -Al₂O₃ was maintained at higher temperatures. In Li₂CO₃-stabilized compositions, β'' -Al₂O₃ formation occurred in two steps. One was β'' -Al₂O₃ formation from α -Al₂O₃ and γ -NaAlO₂ at lower temperatures and the second was β - to β'' -Al₂O₃ transformation at higher temperatures. The transformation temperature ranges decreased with the increase of Li amount, and ternary eutectic liquid was responsible for the second β - to β'' -Al₂O₃ transformation. Through the distribution study, it was shown that the better distribution of stabilizing ions led to more β'' -Al₂O₃ formation at lower temperatures. When Li₂O·5Al₂O₃ was used as a stabilizer, a second β - to β'' -Al₂O₃ transformation at high temperatures did not occur because uniform dispersion of Li⁺ ions suppressed the transient eutectic liquid formation. The implication of the present study is that ternary transient eutectics can accelerate the β - to β'' -Al₂O₃ phase transformation in Li-stabilized system and β'' -Al₂O₃ formation is controlled by the distribution of stabilizers.

References

- 1. J. D. HODGE, J. Amer. Ceram. Soc. 66 (1983) 166.
- 2. A. IMAI and M. HARATA, Jpn. J. Appl. Phys. 11 (1972) 180.
- 3. L. J. MILLES and I. WYNN JONES, *Proc. Brit. Ceram. Soc.* **19** (1971) 161.
- 4. J. BERA, J. Mater. Sci. Lett. 12 (1993) 27.
- L. ZUXIANG and C. KUNGANG, in "Microstructure and properties of ceramic materials," edited by T. S. Yen and J. A. Pask (Plenum Press, New York, 1984) p. 391.
- 6. G. K. DUNCUN and A. R. WEST, Solid State Ionics 9&10 (1983) 259.
- 7. D. D. LEE, J. H. KIM and Y. H. YOON, *J. Mater. Sci.* 25 (1990) 2897.
- 8. J. D. HODGE, Amer. Ceram. Soc. Bull. 62 (1983) 244.
- 9. G. E. YOUNGBLOOD, A. V. VIRKAR, W. R. CANNON and R. D. GORDON, *Amer. Ceram. Soc. Bull.* **56** (1977) 206.
- A. D. JATKAR, I. B. CUTLER, A. V. VIRKAR and R. S. GORDON, in "Processing of crystalline ceramics," edited by H. Parmer, R. F. Davis and T. M. Hare (Plenum Press, New York, 1978) p. 421.
- 11. C. SCHMID, J. Mater. Sci. Lett. 5 (1986) 263.
- 12. H. I. SONG, E. S. KIM and K. H. YOON, *Physica B*. **150** (1988) 148.
- Research on electrodes and electrolyte for the Ford sodium-sulfur battery. Annual report (June 30, 1974 to June 29, 1975), contract NSF (RANN)-C805, July 1975.
- R. M. GERMAN, "Liquid phase sintering" (Plenum Press, New York, 1985).
- 15. G. COLLIN, J. P. BOILOT, PH. COLOMBAN and R. COMES, *Phys. Rev.* **B34** (1986) 5838.
- 16. J. BERA, Solid State Comm. 82 (1992) 205.
- 17. R. C. DEVRIES and W. L. ROTH, J. Amer. Ceram. Soc. 52 (1969) 364.
- N. WEBER and A. F. VENERO, Amer. Ceram. Soc. Bull. 49 (1970) 491.
- 19. C. M. P. M. SARIS, Solid State Ionics 16 (1985) 185.
- 20. P. E. MORGAN, Mater. Res. Bull. 11 (1976) 233.

Received 9 July 1997 and accepted 30 July 1998